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Taiki Saito 
 
Basic Theory of TMD 
 
1. Displacement amplification factor of TMD 
 
To calculate the vibration characteristics of a TMD, a two-story lumped mass model (Figure 1) is 
considered. Figure 1 assumes a building with a TMD at the top, and consists of a single mass model 
(main vibration system) and a TMD (secondary vibration system). The main vibration system has 
mass 𝑚𝑚1  stiffness 𝑘𝑘1  and damping 𝑐𝑐1 , and the secondary vibration system has mass 𝑚𝑚2 , 
stiffness𝑘𝑘2, and damping 𝑐𝑐2. The relative displacement of the main vibration system to the ground 
displacement 𝑥𝑥0 is 𝑥𝑥1, and the relative displacement of the secondary vibration system is 𝑥𝑥2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The equation of motion in Figure 1 is as follows 

�𝑚𝑚1(�̈�𝑥1 + �̈�𝑥0) + 𝑐𝑐1�̇�𝑥1 − 𝑐𝑐2(�̇�𝑥2 − �̇�𝑥1) + 𝑘𝑘1𝑥𝑥1 − 𝑘𝑘2(𝑥𝑥2 − 𝑥𝑥1) = 0
𝑚𝑚2(�̈�𝑥2 + �̈�𝑥0) + 𝑐𝑐2(�̇�𝑥2 − �̇�𝑥1) + 𝑘𝑘2(𝑥𝑥2 − 𝑥𝑥1) = 0

(1) 

From Equation (1), treating the ground inertia force as an external force, the following equation of 
motion is obtained 

�𝑚𝑚1�̈�𝑥1 + (𝑐𝑐1 + 𝑐𝑐2)�̇�𝑥1 − 𝑐𝑐2�̇�𝑥2 + (𝑘𝑘1 + 𝑘𝑘2)𝑥𝑥1 − 𝑘𝑘2𝑥𝑥2 = −𝑚𝑚1�̈�𝑥0
𝑚𝑚2�̈�𝑥2 − 𝑐𝑐2�̇�𝑥1 + 𝑐𝑐2�̇�𝑥2 − 𝑘𝑘2𝑥𝑥1 + 𝑘𝑘2𝑥𝑥2 = −𝑚𝑚2�̈�𝑥0

(2) 

 
 

Figure 1 
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Described in matrix form, it is as follows. 

�𝑚𝑚1 0
0 𝑚𝑚2

� ��̈�𝑥1�̈�𝑥2
� + �

𝑐𝑐1 + 𝑐𝑐2 −𝑐𝑐2
−𝑐𝑐2 𝑐𝑐2

� ��̇�𝑥1�̇�𝑥2
� + �𝑘𝑘1 + 𝑘𝑘2 −𝑘𝑘2

−𝑘𝑘2 𝑘𝑘2
� �
𝑥𝑥1
𝑥𝑥2� = −�𝑚𝑚1 0

0 𝑚𝑚2
� �11� �̈�𝑥0

(3) 

 
Dividing equations 1 and 2 by m1 and m2, 

�1 0
0 1� �

�̈�𝑥1
�̈�𝑥2
� + �2𝜔𝜔1ℎ1 + 2𝜇𝜇𝜔𝜔2ℎ2 −2𝜇𝜇𝜔𝜔2ℎ2

−2𝜔𝜔2ℎ2 2𝜔𝜔2ℎ2
� ��̇�𝑥1�̇�𝑥2

� + �𝜔𝜔1
2 + 𝜔𝜔2

2𝜇𝜇 −𝜔𝜔2
2𝜇𝜇

−𝜔𝜔2
2 𝜔𝜔2

2 � �
𝑥𝑥1
𝑥𝑥2� = − �1 0

0 1� �
1
1� �̈�𝑥0

(4) 

where 𝜔𝜔1 is the natural circular frequency of the main vibration system, 𝜔𝜔2 is the natural circular 
frequency of the secondary vibration system, 𝜇𝜇 is the mass ratio of the main and secondary vibration 
systems, h1 is the damping factor of the main vibration system, and h2 is the damping factor of the 
secondary vibration system. 

𝜔𝜔1 = �
𝑘𝑘1
𝑚𝑚1

  (𝑎𝑎)    𝜔𝜔2 = �
𝑘𝑘2
𝑚𝑚2

  (𝑏𝑏)    𝜇𝜇 =
𝑚𝑚2

𝑚𝑚1
  (𝑐𝑐)    ℎ1 =

𝑐𝑐1
2𝑚𝑚1𝜔𝜔1

  (𝑑𝑑)    ℎ2 =
𝑐𝑐2

2𝑚𝑚2𝜔𝜔2
  (𝑒𝑒) (5) 

Here, the ground motions defined by the following equation. 
𝑥𝑥0 = 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (6) 

The acceleration of the ground motion is then 
�̈�𝑥0 = −𝜔𝜔2𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (7) 

The displacement, velocity, and acceleration are given as follows 
𝑥𝑥𝑗𝑗 = 𝐴𝐴𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖          (𝑗𝑗 = 0,1,2) (8) 
�̇�𝑥𝑗𝑗 = 𝑖𝑖𝜔𝜔𝐴𝐴𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖          (𝑗𝑗 = 0,1,2) (9) 
�̈�𝑥𝑗𝑗 = −𝜔𝜔2𝐴𝐴𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖          (𝑗𝑗 = 0,1,2) (10) 

 
Substituting Equations (7) through (10) into Equation (4), the following equation is obtained 

�−𝜔𝜔
2 + 𝜔𝜔12 + 𝜔𝜔2

2𝜇𝜇 + (2𝜔𝜔1ℎ1 + 2𝜇𝜇𝜔𝜔2ℎ2)𝑖𝑖𝜔𝜔 −𝜔𝜔2
2𝜇𝜇 − 2𝜇𝜇𝜔𝜔2ℎ2𝑖𝑖𝜔𝜔

−𝜔𝜔2
2 − 2𝜔𝜔2ℎ2𝑖𝑖𝜔𝜔 −𝜔𝜔2 + 𝜔𝜔2

2 + 2𝜔𝜔2ℎ2𝑖𝑖𝜔𝜔
� �𝐴𝐴1𝐴𝐴2

� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = �𝜔𝜔
2 0

0 𝜔𝜔2� �
1
1� 𝐴𝐴0𝑒𝑒

𝑖𝑖𝑖𝑖𝑖𝑖 (11) 

 
Dividing Equation (11) by 𝜔𝜔12 and transforming the equation, the following equation is obtained 

�−𝛽𝛽
2 + 1 + 𝛼𝛼2𝜇𝜇 + (2ℎ1 + 2𝜇𝜇𝛼𝛼ℎ2)𝑖𝑖𝛽𝛽 −𝛼𝛼2𝜇𝜇 − 2𝜇𝜇𝛼𝛼ℎ2𝑖𝑖𝛽𝛽

−𝛼𝛼2 − 2𝛼𝛼ℎ2𝑖𝑖𝛽𝛽 −𝛽𝛽2 + 𝛼𝛼2 + 2𝛼𝛼ℎ2𝑖𝑖𝛽𝛽
� �𝐴𝐴1𝐴𝐴2

� = �𝛽𝛽
2𝐴𝐴0

𝛽𝛽2𝐴𝐴0
� (12) 

 
where 𝛼𝛼  is the natural circular frequency ratio of the main vibration system to the secondary 
vibration system, and 𝛽𝛽 is the natural circular frequency ratio of the main vibration system to the 
harmonic ground motion.  

𝛼𝛼 =
𝜔𝜔2

𝜔𝜔1
     𝛽𝛽 =

𝜔𝜔
𝜔𝜔1

(13) 
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The complex amplitudes 𝐴𝐴1 and 𝐴𝐴2 are obtained as follows. 

𝐴𝐴1 =
{𝛼𝛼2(1 + 𝜇𝜇) − 𝛽𝛽2} + 2ℎ2𝛼𝛼𝛽𝛽(1 + 𝜇𝜇)𝑖𝑖

det𝑨𝑨
× 𝛽𝛽2𝐴𝐴0 (14) 

𝐴𝐴2 =
{1 + 𝛼𝛼2(1 + 𝜇𝜇) − 𝛽𝛽2} + 2𝛽𝛽{ℎ1 + ℎ2𝛼𝛼(1 + 𝜇𝜇)}𝑖𝑖

det𝑨𝑨
× 𝛽𝛽2𝐴𝐴0 (15) 

Therefore, from Equations (8), (14) and (15), the relative displacements 𝑥𝑥1 and 𝑥𝑥2 of the main and 
secondary vibration systems, respectively, are determined as follows 

𝑥𝑥1 = 𝐴𝐴1𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 =
𝛽𝛽2{𝛼𝛼2(1 + 𝜇𝜇) − 𝛽𝛽2} + 2ℎ2𝛼𝛼𝛽𝛽3(1 + 𝜇𝜇)𝑖𝑖

det𝑨𝑨
× 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 =

𝑅𝑅1 + 𝐼𝐼1𝑖𝑖
𝑅𝑅0 + 𝐼𝐼0𝑖𝑖

× 𝑥𝑥0 (16) 

𝑥𝑥2 = 𝐴𝐴2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 =
𝛽𝛽2{1 + 𝛼𝛼2(1 + 𝜇𝜇) − 𝛽𝛽2} + 2𝛽𝛽3{ℎ1 + ℎ2𝛼𝛼(1 + 𝜇𝜇)}𝑖𝑖

det𝑨𝑨
× 𝐴𝐴0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 =

𝑅𝑅2 + 𝐼𝐼2𝑖𝑖
𝑅𝑅0 + 𝐼𝐼0𝑖𝑖

× 𝑥𝑥0 (17) 

 
where each coefficient is defined as follows 
𝑅𝑅0 = {(1 − 𝛽𝛽2)(𝛼𝛼2 − 𝛽𝛽2) − 𝛼𝛼𝛽𝛽2(𝜇𝜇𝛼𝛼 + 4ℎ1ℎ2)}  (𝑎𝑎)     𝐼𝐼0 = 2𝛽𝛽{ℎ1(𝛼𝛼2 − 𝛽𝛽2) + ℎ2𝛼𝛼(1 − 𝛽𝛽2[1 + 𝜇𝜇])}  (𝑏𝑏) (18) 
𝑅𝑅1 = 𝛽𝛽2{𝛼𝛼2(1 + 𝜇𝜇) − 𝛽𝛽2}                                           (𝑎𝑎)     𝐼𝐼1 = 2ℎ2𝛼𝛼𝛽𝛽3(1 + 𝜇𝜇)                                                 (𝑏𝑏) (19) 
𝑅𝑅2 = 𝛽𝛽2{1 + 𝛼𝛼2(1 + 𝜇𝜇) − 𝛽𝛽2}                                   (𝑎𝑎)    𝐼𝐼2 = 2𝛽𝛽3{ℎ1 + ℎ2𝛼𝛼(1 + 𝜇𝜇)}                                    (𝑏𝑏) (20) 

 
Equation below is the ratio of the amplitudes of the response of the main vibration system to the 
pseudo static response 𝑥𝑥𝑠𝑠, which is called the displacement amplification factor. 
 

�
𝑥𝑥1
𝑥𝑥0
� =

�𝑅𝑅12 + 𝐼𝐼12

�𝑅𝑅02 + 𝐼𝐼02

=
�𝛽𝛽4{𝛼𝛼2(1 + 𝜇𝜇) − 𝛽𝛽2}2 + 4ℎ22𝛼𝛼2𝛽𝛽6(1 + 𝜇𝜇)2

�{(1 − 𝛽𝛽2)(𝛼𝛼2 − 𝛽𝛽2) − 𝛼𝛼𝛽𝛽2(𝜇𝜇𝛼𝛼 + 4ℎ1ℎ2)}2 + 4𝛽𝛽2{ℎ1(𝛼𝛼2 − 𝛽𝛽2) + ℎ2𝛼𝛼(1 − 𝛽𝛽2[1 + 𝜇𝜇])}2
(21)

 

�
𝑥𝑥2
𝑥𝑥0
� =

�𝑅𝑅22 + 𝐼𝐼22

�𝑅𝑅02 + 𝐼𝐼02

=
�𝛽𝛽4{1 + 𝛼𝛼2(1 + 𝜇𝜇) − 𝛽𝛽2}2 + 4𝛽𝛽6{ℎ1 + ℎ2𝛼𝛼(1 + 𝜇𝜇)}2

�{(1 − 𝛽𝛽2)(𝛼𝛼2 − 𝛽𝛽2) − 𝛼𝛼𝛽𝛽2(𝜇𝜇𝛼𝛼 + 4ℎ1ℎ2)}2 + 4𝛽𝛽2{ℎ1(𝛼𝛼2 − 𝛽𝛽2) + ℎ2𝛼𝛼(1 − 𝛽𝛽2[1 + 𝜇𝜇])}2
(22)
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Next, consider the case where the displacement of the vibration system is defined in terms of 
absolute displacement, as shown in Figure 2.  

 
Figure 2 

 
Similar to Equation (2) in the case of relative displacement, the equation of motion when the 
ground motion 𝑥𝑥0(𝑡𝑡) is added to the base of the two-story lumped mass model is formulated using 
the absolute displacements 𝑋𝑋1,𝑋𝑋2. 
 

�
𝑚𝑚1��̈�𝑋1 − �̈�𝑥0� + (𝑐𝑐1 + 𝑐𝑐2)��̇�𝑋1 − �̇�𝑥0� − 𝑐𝑐2��̇�𝑋2 − �̇�𝑥0� + (𝑘𝑘1 + 𝑘𝑘2)(𝑋𝑋1 − 𝑥𝑥0) − 𝑘𝑘2(𝑋𝑋2 − 𝑥𝑥0) = −𝑚𝑚1�̈�𝑥0

𝑚𝑚2��̈�𝑋2 − �̈�𝑥0� − 𝑐𝑐2��̇�𝑋1 − �̇�𝑥0� + 𝑐𝑐2��̇�𝑋2 − �̇�𝑥0� − 𝑘𝑘2(𝑋𝑋1 − 𝑥𝑥0) + 𝑘𝑘2(𝑋𝑋2 − 𝑥𝑥0) = −𝑚𝑚2�̈�𝑥0
(23) 

 
The following equation for the absolute displacement amplification factor can be obtained by 
performing the same operations as in Equations (4)-(22). The following equation shows that the 
absolute displacement amplification factor is equal to the complex amplitude of the relative 
displacement amplification factor plus the complex amplitude of the ground displacement. 
 

�
𝑋𝑋1
𝑥𝑥0
� =

�{𝛼𝛼2 − 𝛽𝛽2 − 4𝛼𝛼𝛽𝛽2ℎ1ℎ2}2 + 4𝛽𝛽2{ℎ1(𝛼𝛼2 − 𝛽𝛽2) + 𝛼𝛼ℎ2}2

�{(1 − 𝛽𝛽2)(𝛼𝛼2 − 𝛽𝛽2) − 𝛼𝛼𝛽𝛽2(𝜇𝜇𝛼𝛼 + 4ℎ1ℎ2)}2 + 4𝛽𝛽2{ℎ1(𝛼𝛼2 − 𝛽𝛽2) + ℎ2𝛼𝛼(1 − 𝛽𝛽2[1 + 𝜇𝜇])}2

=
�(𝑅𝑅1 + 𝑅𝑅0)2 + (𝐼𝐼1 + 𝐼𝐼0)2

�𝑅𝑅02 + 𝐼𝐼02
(24)
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�
𝑋𝑋2
𝑥𝑥0
� =

�{𝛼𝛼2 − 4𝛼𝛼𝛽𝛽2ℎ1ℎ2}2 + {2𝛼𝛼𝛽𝛽(𝛼𝛼ℎ1 + ℎ2)}2

�{(1 − 𝛽𝛽2)(𝛼𝛼2 − 𝛽𝛽2) − 𝛼𝛼𝛽𝛽2(𝜇𝜇𝛼𝛼 + 4ℎ1ℎ2)}2 + 4𝛽𝛽2{ℎ1(𝛼𝛼2 − 𝛽𝛽2) + ℎ2𝛼𝛼(1 − 𝛽𝛽2[1 + 𝜇𝜇])}2

=
�(𝑅𝑅2 + 𝑅𝑅0)2 + (𝐼𝐼2 + 𝐼𝐼0)2

�𝑅𝑅02 + 𝐼𝐼02
(25)

 

 
From Equations (10) and (25) and (26), the acceleration amplification multiplier can be obtained as 
follows. The following equations show that the ratio of response amplitude to ground motion is 
equivalent for both displacement and acceleration. 

�̈�𝑋𝑗𝑗(𝑗𝑗 = 1,2) = −𝜔𝜔2𝐴𝐴𝑗𝑗𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = −𝜔𝜔2 ×
�𝑅𝑅𝑗𝑗 + 𝑅𝑅0� + �𝐼𝐼𝑗𝑗 + 𝐼𝐼0�𝑖𝑖

𝑅𝑅0 + 𝐼𝐼0𝑖𝑖
× 𝐴𝐴0 × 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 =

�𝑅𝑅𝑗𝑗 + 𝑅𝑅0� + �𝐼𝐼𝑗𝑗 + 𝐼𝐼0�𝑖𝑖
𝑅𝑅0 + 𝐼𝐼0𝑖𝑖

× �̈�𝑥0 (26) 

∴ �
�̈�𝑋𝑗𝑗
�̈�𝑥0
� (𝑘𝑘 = 1,2) =

��𝑅𝑅𝑗𝑗 + 𝑅𝑅0�
2

+ �𝐼𝐼𝑗𝑗 + 𝐼𝐼0�
2

�𝑅𝑅02 + 𝐼𝐼02
= �

𝑋𝑋𝑗𝑗
𝑥𝑥0
� (27) 

 
The absolute response amplification factor of the main vibration system obtained by Equations (24) 
is shown in Figure 3. The horizontal axis of the figure is the frequency ratio of the circular 
frequency (𝜔𝜔) of the harmonic ground motion input to the two-story lumped mass model in Figure 
2 normalized by the natural circular frequency (𝜔𝜔1) of the main vibration system, and the vertical 
axis is the response of the main vibration system normalized by the amplitude of the ground 
motion. As shown in Equation (27), the ratio of response amplitude to ground motion is equivalent 
to both the displacement response and the acceleration response, so they are treated here as a 
response amplification factor without distinguishing between them. 
 
As shown in Figure 3, the response amplification of the main vibration system has a resonance curve 
with a valley near a frequency ratio of 1 and two peaks on both sides. 
 

 
 

Figure 3 Response amplification factor of the main vibration system 
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𝑋𝑋1
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（𝛼𝛼 = 0.9, 𝜇𝜇 = 0.1, ℎ1 = 0.05, ℎ2 = 0.1） 
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In this section, the optimal values of mass, stiffness, and damping of the TMD are examined from 
the resonance curve when ℎ1 = 0, without considering damping of the main vibration system. 
Figure 4(a) shows a model of the main vibration system only, assuming a non-damped building 
with no TMD installed, Figure 4(b) shows a model of a building with an undamped TMD at the top, 
and Figure 4(c) shows a model of a building with a damped TMD at the top. Figure 5 shows the 
resonance curves for each. Here, the frequency ratio 𝛼𝛼 = 1, the mass ratio 𝜇𝜇 = 0.05, and the 
damping factor ℎ2 = 0.05 for the secondary vibration system is assumed. 

 
Figure 4 

 

 

 
Figure 5 Response amplification factor of the main vibration system 

 
Figure 6 shows the change in response reduction ratio with mass ratio. It can be seen that the 
response reduction ratio increases as the mass ratio is increased. It can also be seen that not only 
the amplitude of the maxima is decreasing, but also the interval between the frequencies of the 
maxima is widening as the mass ratio is increased. This has the effect of preventing the response 
from increasing when the external force frequency is input in a range slightly off the resonance 
frequency. Although the installation of large-weight weights can not only increase the response 

�
𝑋𝑋1
𝑥𝑥0
� 

𝜔𝜔
𝜔𝜔1

 

(c) No damping 

(b) No damping TMD 

(a) Damping TMD 
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reduction effect but also improve robustness, the mass of the weights should be determined in actual 
design, taking into consideration the installation in the building, construction restrictions, and safety. 
 

 

 
Figure 6 Comparison of resonance curves for different mass ratios 

 
Figure 7 shows the resonance curve for varying the damping factor of the TMD with constant mass 
ratio and frequency ratio (mass ratio 𝜇𝜇 = 0.1 and frequency ratio 𝛼𝛼 = 0.9). As can be seen, there are 
two points that always pass through for any damping factor, and these are called fixed points. 
 

 

 
Figure 7 Comparison of resonance curves of different damping factors 

 
The fixed-point theorem defines the optimal value as the frequency ratio at which the two maxima 
are the same value. When the damping factor is set to the optimum value, a resonance curve with 
the fixed point as the maximum value is drawn, as shown in Figure 8. This is the resonance curve 
of the optimum tuned damping that reduces the response factor the most. 
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Figure 8 Resonance curve with optimum damping factor  
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2. Optimum damping factor of TMD 
 
In the absolute displacement amplification factor of Equation (25), if the damping factor of the main 
vibration system ℎ1 = 0 and the damping factor of the secondary vibration system ℎ2 = ℎ; 
 

�
𝑋𝑋1
𝑥𝑥0
� =

�{𝛼𝛼2 − 𝛽𝛽2}2 + 4ℎ2𝛼𝛼2𝛽𝛽2

�{(1 − 𝛽𝛽2)(𝛼𝛼2 − 𝛽𝛽2) − 𝜇𝜇𝛼𝛼2𝛽𝛽2}2 + 4𝛽𝛽2{ℎ𝛼𝛼(1 − 𝛽𝛽2[1 + 𝜇𝜇])}2

=
�𝑎𝑎12 + ℎ2𝑎𝑎22

�𝑎𝑎32 + ℎ2𝑎𝑎42
(29)

 

where 
𝑎𝑎1 = 𝛼𝛼2 − 𝛽𝛽2 
𝑎𝑎2 = 2αβ 

𝑎𝑎3 = (1 − 𝛽𝛽2)(𝛼𝛼2 − 𝛽𝛽2) − 𝜇𝜇𝛼𝛼2𝛽𝛽2 
𝑎𝑎4 = 2𝛼𝛼𝛽𝛽(1 − 𝛽𝛽2[1 + 𝜇𝜇]) (30) 

When ℎ = 0 

�
𝑋𝑋1
𝑥𝑥0
� = �

𝑎𝑎1
𝑎𝑎3
� (31) 

When ℎ = ∞ 

�
𝑋𝑋1
𝑥𝑥0
� = �

𝑎𝑎2
𝑎𝑎4
� (32) 

At the fixed point, since both are equal 

�
𝑎𝑎1
𝑎𝑎3
� = �

𝑎𝑎2
𝑎𝑎4
� (33) 

That is 

�
𝑎𝑎1
𝑎𝑎3
�
2

= �
𝑎𝑎2
𝑎𝑎4
�
2

(34) 

{𝛼𝛼2 − 𝛽𝛽2}2

{(1 − 𝛽𝛽2)(𝛼𝛼2 − 𝛽𝛽2) − 𝜇𝜇𝛼𝛼2𝛽𝛽2}2 =
4𝛼𝛼2𝛽𝛽2

4𝛽𝛽2{𝛼𝛼(1 − 𝛽𝛽2[1 + 𝜇𝜇])}2 =
1

(1 − 𝛽𝛽2[1 + 𝜇𝜇])2
(35) 

where 
𝑎𝑎 = 𝛼𝛼2,    𝑏𝑏 = 𝛽𝛽2,    𝑐𝑐 = 1 + 𝜇𝜇 (36) 

Then 

(𝑎𝑎 − 𝑏𝑏)2

(𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏2 − 𝑎𝑎𝑏𝑏𝑐𝑐)2 =
1

(1 − 𝑏𝑏𝑐𝑐)2
(37) 

(𝑎𝑎 − 𝑏𝑏)
(𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏2 − 𝑎𝑎𝑏𝑏𝑐𝑐) = −

1
(1 − 𝑏𝑏𝑐𝑐)

(38) 

(1 + 𝑐𝑐)𝑏𝑏2 − 2(1 + 𝑎𝑎𝑐𝑐)𝑏𝑏 + 2𝑎𝑎 = 0 
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𝑏𝑏2 −
2(1 + 𝑎𝑎𝑐𝑐)

1 + 𝑐𝑐
𝑏𝑏 +

2𝑎𝑎
1 + 𝑐𝑐

= 0 (39) 

If the solutions of the quadratic equation for b are 𝜑𝜑1 and 𝜑𝜑2, the following equation holds from the 
relationship between the solutions and coefficients. 

𝜑𝜑1 + 𝜑𝜑2 =
2(1 + 𝑎𝑎𝑐𝑐)

1 + 𝑐𝑐
(40) 

𝜑𝜑1𝜑𝜑2 =
2𝑎𝑎

1 + 𝑐𝑐
(41) 

From the condition that the amplitudes at the solutions at 𝜑𝜑1 and 𝜑𝜑2 are equal when the damping 
factor ℎ = ∞, we obtain 

�
𝑎𝑎2
𝑎𝑎4
�
2

𝜑𝜑1
= �

𝑎𝑎2
𝑎𝑎4
�
2

𝜑𝜑2

(42) 

1
(1 − 𝜑𝜑1c)2 =

1
(1 − 𝜑𝜑2c)2 

1 − 𝜑𝜑1𝑐𝑐 = ±{1 − 𝜑𝜑2𝑐𝑐} 
From the condition 𝜑𝜑1 ≠ 𝜑𝜑2 

1 − 𝜑𝜑1𝑐𝑐 = −{1 − 𝜑𝜑2𝑐𝑐} 

𝜑𝜑1 + 𝜑𝜑2 =
2
c

(43) 

From the relationship between the solutions and coefficients of the quadratic equation 

2(1 + 𝑎𝑎𝑐𝑐)
1 + 𝑐𝑐

=
2
c

(44) 

𝑎𝑎 =
1
𝑐𝑐2

(45) 

Therefore, the optimum frequency ratio is obtained as 
𝜔𝜔2

𝜔𝜔1
=

1
1 + 𝜇𝜇

(46) 

The solution of the quadratic equation, 

𝑏𝑏2 − 𝑏𝑏 �
2
𝑐𝑐
� +

2𝑎𝑎
1 + 𝑐𝑐

= 0 

Then 

𝑏𝑏 =
�2
𝑐𝑐� ± ��2

𝑐𝑐�
2
− 4 2𝑎𝑎

1 + 𝑐𝑐
2

=
1
𝑐𝑐

± �
1
𝑐𝑐2
−

2
𝑐𝑐2(1 + 𝑐𝑐) =

1
𝑐𝑐
�1 ± �𝑐𝑐 − 1

𝑐𝑐 + 1
� =

1 ± �
𝜇𝜇

2 + 𝜇𝜇
1 + 𝜇𝜇

(47) 

Since 𝑏𝑏 = 𝛽𝛽2 = � 𝑖𝑖
𝑖𝑖1
�
2
, 
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�
𝜔𝜔
𝜔𝜔1
�
1,2

=
�1 ± �

𝜇𝜇
2 + 𝜇𝜇

1 + 𝜇𝜇
(48)

 

 
Next, find the damping factor h such that the response factor is the maximum at the fixed point. 
From the absolute displacement amplification factor, Equation (29), 

�
𝑋𝑋1
𝑥𝑥0
�
2

=
𝑎𝑎12 + ℎ2𝑎𝑎22

𝑎𝑎32 + ℎ2𝑎𝑎42
(49) 

where 
𝑎𝑎12 = {𝛼𝛼2 − 𝛽𝛽2}2 = (𝑎𝑎 − 𝑏𝑏)2 

𝑎𝑎22 = {2αβ}2 = 4𝑎𝑎𝑏𝑏 
𝑎𝑎32 = {(1 − 𝛽𝛽2)(𝛼𝛼2 − 𝛽𝛽2) − 𝜇𝜇𝛼𝛼2𝛽𝛽2}2 = (𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏2 − 𝑎𝑎𝑏𝑏𝑐𝑐)2 

𝑎𝑎42 = {2𝛼𝛼𝛽𝛽(1 − 𝛽𝛽2[1 + 𝜇𝜇])}2 = 4𝑎𝑎𝑏𝑏(1 − 𝑏𝑏𝑐𝑐)2 (50) 
Then 

�
𝑋𝑋1
𝑥𝑥0
�
2

=
(𝑎𝑎 − 𝑏𝑏)2 + 4ℎ2𝑎𝑎𝑏𝑏

(𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏2 − 𝑎𝑎𝑏𝑏𝑐𝑐)2 + 4ℎ2𝑎𝑎𝑏𝑏(1 − 𝑏𝑏𝑐𝑐)2 =
𝑓𝑓(𝑏𝑏)
𝑔𝑔(𝑏𝑏)

(51) 

 
Since the partial derivative of the equation is zero at the maximum point 

𝜕𝜕
𝜕𝜕𝑏𝑏

��
𝑋𝑋1
𝑥𝑥0
�
2

� =
𝑓𝑓′(𝑏𝑏)𝑔𝑔(𝑏𝑏) − 𝑓𝑓(𝑏𝑏)𝑔𝑔′(𝑏𝑏)

𝑔𝑔(𝑏𝑏)2 = 0 (52) 

Therefore 
𝑓𝑓′(𝑏𝑏)𝑔𝑔(𝑏𝑏) − 𝑓𝑓(𝑏𝑏)𝑔𝑔′(𝑏𝑏) = 0 (53) 

where 
𝑓𝑓(𝑏𝑏) = (𝑎𝑎 − 𝑏𝑏)2 + 4ℎ2𝑎𝑎𝑏𝑏 
𝑓𝑓′(𝑏𝑏) = −2(𝑎𝑎 − 𝑏𝑏) + 4ℎ2𝑎𝑎 

𝑔𝑔(𝑏𝑏) = (𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏2 − 𝑎𝑎𝑏𝑏𝑐𝑐)2 + 4ℎ2𝑎𝑎𝑏𝑏(1 − 𝑏𝑏𝑐𝑐)2 
𝑔𝑔′(𝑏𝑏) = 2(𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏2 − 𝑎𝑎𝑏𝑏𝑐𝑐)(−1 + 2𝑏𝑏 − 𝑎𝑎𝑐𝑐) + ℎ2{4𝑎𝑎(1 − 𝑏𝑏𝑐𝑐)2 − 8𝑎𝑎𝑏𝑏𝑐𝑐(1 − 𝑏𝑏𝑐𝑐)} 

From Equation (37), 

(𝑎𝑎 − 𝑏𝑏)2

(𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏2 − 𝑎𝑎𝑏𝑏𝑐𝑐)2 =
1

(1 − 𝑏𝑏𝑐𝑐)2 

(𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏2 − 𝑎𝑎𝑏𝑏𝑐𝑐)2 = (𝑎𝑎 − 𝑏𝑏)2(1 − 𝑏𝑏𝑐𝑐)2 (54) 
(𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏2 − 𝑎𝑎𝑏𝑏𝑐𝑐) = −(𝑎𝑎 − 𝑏𝑏)(1 − 𝑏𝑏𝑐𝑐) (55) 

Then 
𝑔𝑔(𝑏𝑏) = (𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏2 − 𝑎𝑎𝑏𝑏𝑐𝑐)2 + 4ℎ2𝑎𝑎𝑏𝑏(1 − 𝑏𝑏𝑐𝑐)2 = (𝑎𝑎 − 𝑏𝑏)2(1 − 𝑏𝑏𝑐𝑐)2 + 4ℎ2𝑎𝑎𝑏𝑏(1 − 𝑏𝑏𝑐𝑐)2

= (1 − 𝑏𝑏𝑐𝑐)2{(𝑎𝑎 − 𝑏𝑏)2 + 4ℎ2𝑎𝑎𝑏𝑏} 
𝑔𝑔′(𝑏𝑏) = 2(𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏2 − 𝑎𝑎𝑏𝑏𝑐𝑐)(−1 + 2𝑏𝑏 − 𝑎𝑎𝑐𝑐) + ℎ2{4𝑎𝑎(1 − 𝑏𝑏𝑐𝑐)2 − 8𝑎𝑎𝑏𝑏𝑐𝑐(1 − 𝑏𝑏𝑐𝑐)}

= 2(𝑎𝑎 − 𝑏𝑏)(1 − 𝑏𝑏𝑐𝑐)(1 − 2𝑏𝑏 + 𝑎𝑎𝑐𝑐) + ℎ2{4𝑎𝑎(1 − 𝑏𝑏𝑐𝑐)2 − 8𝑎𝑎𝑏𝑏𝑐𝑐(1 − 𝑏𝑏𝑐𝑐)} 
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To summarize the above 
𝑓𝑓(𝑏𝑏) = (𝑎𝑎 − 𝑏𝑏)2 + 4ℎ2𝑎𝑎𝑏𝑏 (56) 
𝑓𝑓′(𝑏𝑏) = −2(𝑎𝑎 − 𝑏𝑏) + 4ℎ2𝑎𝑎 (57) 
𝑔𝑔(𝑏𝑏) = (1 − 𝑏𝑏𝑐𝑐)2𝑓𝑓(𝑏𝑏) (58) 

𝑔𝑔′(𝑏𝑏) = (1 − 𝑏𝑏𝑐𝑐)[2(𝑎𝑎 − 𝑏𝑏)(1 − 2𝑏𝑏 + 𝑎𝑎𝑐𝑐) + ℎ2{4𝑎𝑎(1 − 𝑏𝑏𝑐𝑐) − 8𝑎𝑎𝑏𝑏𝑐𝑐}] (59) 
 
Substituting into Equation (53),  

𝑓𝑓′(𝑏𝑏)𝑔𝑔(𝑏𝑏) − 𝑓𝑓(𝑏𝑏)𝑔𝑔′(𝑏𝑏)

= {−2(𝑎𝑎 − 𝑏𝑏) + 4ℎ2𝑎𝑎}(1 − 𝑏𝑏𝑐𝑐)2𝑓𝑓(𝑏𝑏)

− 𝑓𝑓(𝑏𝑏)(1 − 𝑏𝑏𝑐𝑐)[2(𝑎𝑎 − 𝑏𝑏)(1 − 2𝑏𝑏 + 𝑎𝑎𝑐𝑐) + ℎ2{4𝑎𝑎(1 − 𝑏𝑏𝑐𝑐) − 8𝑎𝑎𝑏𝑏𝑐𝑐}] = 0 
Dividing by 𝑓𝑓(𝑏𝑏)(1 − 𝑏𝑏𝑐𝑐) 

{−2(𝑎𝑎 − 𝑏𝑏) + 4ℎ2𝑎𝑎}(1 − 𝑏𝑏𝑐𝑐) − [2(𝑎𝑎 − 𝑏𝑏)(1 − 2𝑏𝑏 + 𝑎𝑎𝑐𝑐) + ℎ2{4𝑎𝑎(1 − 𝑏𝑏𝑐𝑐) − 8𝑎𝑎𝑏𝑏𝑐𝑐}] = 0 
{4𝑎𝑎(1 − 𝑏𝑏𝑐𝑐) − 4𝑎𝑎(1 − 𝑏𝑏𝑐𝑐) + 8𝑎𝑎𝑏𝑏𝑐𝑐}ℎ2 − 2(𝑎𝑎 − 𝑏𝑏){(1 − 𝑏𝑏𝑐𝑐) + (1 − 2𝑏𝑏 + 𝑎𝑎𝑐𝑐)} = 0 

(8𝑎𝑎𝑏𝑏𝑐𝑐3)ℎ2 − 2(𝑎𝑎 − 𝑏𝑏)(2 − 𝑏𝑏𝑐𝑐 − 2𝑏𝑏 + 𝑎𝑎𝑐𝑐) = 0 

ℎ2 =
(𝑎𝑎 − 𝑏𝑏)(2 − 𝑏𝑏𝑐𝑐 − 2𝑏𝑏 + 𝑎𝑎𝑐𝑐)

4𝑎𝑎𝑏𝑏𝑐𝑐3
(60) 

From Equations (39) and (45) 

𝑏𝑏2 −
2(1 + 𝑎𝑎𝑐𝑐)

1 + 𝑐𝑐
𝑏𝑏 +

2𝑎𝑎
1 + 𝑐𝑐

= 0  

𝑎𝑎 =
1
𝑐𝑐2

 

Then 

𝑏𝑏2 − 𝑏𝑏 �2
𝑐𝑐
� + 2𝑎𝑎

1+𝑐𝑐
= 0  𝑏𝑏2 − 𝑏𝑏 �2

𝑐𝑐
� + 2

1+𝑐𝑐
1
𝑐𝑐2

= 0  𝑏𝑏2𝑐𝑐2 − 2𝑏𝑏𝑐𝑐 + 2
1+𝑐𝑐

= 0  

 𝑏𝑏2𝑐𝑐2(1 + 𝑐𝑐) − 2𝑏𝑏𝑐𝑐(1 + 𝑐𝑐) + 2 = 0  𝑏𝑏2𝑐𝑐2 + 𝑏𝑏2𝑐𝑐3 − 2𝑏𝑏𝑐𝑐 − 2𝑏𝑏𝑐𝑐2 + 2 = 0   (61) 
 
Transforming Equation (60) 

ℎ2 = (𝑎𝑎−𝑏𝑏)(2−𝑏𝑏𝑐𝑐−2𝑏𝑏+𝑎𝑎𝑐𝑐)
4𝑎𝑎𝑏𝑏𝑐𝑐3

  
� 1𝑐𝑐2−𝑏𝑏��2−𝑏𝑏𝑐𝑐−2𝑏𝑏+

1
𝑐𝑐�

4𝑏𝑏𝑐𝑐
   

(1−𝑏𝑏𝑐𝑐2)�2−𝑏𝑏𝑐𝑐−2𝑏𝑏+1𝑐𝑐�

4𝑏𝑏𝑐𝑐3
  

2−𝑏𝑏𝑐𝑐−2𝑏𝑏+1𝑐𝑐−2𝑏𝑏𝑐𝑐
2+𝑏𝑏2𝑐𝑐3+2𝑏𝑏2𝑐𝑐2−𝑏𝑏𝑐𝑐

4𝑏𝑏𝑐𝑐3
 

 
𝑏𝑏2𝑐𝑐3−2𝑏𝑏𝑐𝑐−2𝑏𝑏𝑐𝑐2+2−2𝑏𝑏+1𝑐𝑐+2𝑏𝑏

2𝑐𝑐2

4𝑏𝑏𝑐𝑐3
  

−𝑏𝑏2𝑐𝑐2−2𝑏𝑏+1𝑐𝑐+2𝑏𝑏
2𝑐𝑐2

4𝑏𝑏𝑐𝑐3
  

−2𝑏𝑏+1𝑐𝑐+𝑏𝑏
2𝑐𝑐2

4𝑏𝑏𝑐𝑐3
   

−2𝑐𝑐+1𝑏𝑏+𝑏𝑏𝑐𝑐
3

4𝑐𝑐4
  

 
From Equations (36) and (47) 

𝑐𝑐 = 1 + 𝜇𝜇  

𝑏𝑏 =
1 + �

𝜇𝜇
2 + 𝜇𝜇

1 + 𝜇𝜇
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Substituting these equations, 

1 𝑏𝑏⁄ =
1 + 𝜇𝜇

1 + �
𝜇𝜇

2 + 𝜇𝜇

=
1
2

(1 + 𝜇𝜇)(2 + 𝜇𝜇)�1 − √𝐴𝐴�, 𝐴𝐴 =
𝜇𝜇

2 + 𝜇𝜇
 

−2𝑐𝑐 + 1
𝑏𝑏

+ 𝑏𝑏𝑐𝑐3 = −2(1 + 𝜇𝜇) + 1
2

(1 + 𝜇𝜇)(2 + 𝜇𝜇)�1 − √𝐴𝐴� + (1 + 𝜇𝜇)2�1 + √𝐴𝐴� = (1+𝜇𝜇)𝜇𝜇
2

�3 + √𝐴𝐴�  

Then, Equation (60) will be 

ℎ2 =
𝜇𝜇

8(1 + 𝜇𝜇)3 �3 + �
𝜇𝜇

2 + 𝜇𝜇
� (62) 

In the similar way, when 

𝑏𝑏 =
1 −�

𝜇𝜇
2 + 𝜇𝜇

1 + 𝜇𝜇
   

The optimum damping factor is 

ℎ2 =
𝜇𝜇

8(1 + 𝜇𝜇)3 �3 −�
𝜇𝜇

2 + 𝜇𝜇
� (63) 

By averaging Equation (62) and (63), 

ℎ𝑜𝑜𝑜𝑜𝑖𝑖2 =
3𝜇𝜇

8(1 + 𝜇𝜇)3
(64) 

Therefore, the optimum damping factor is obtained as 

ℎ𝑜𝑜𝑜𝑜𝑖𝑖 = �
3𝜇𝜇

8(1 + 𝜇𝜇)3
(65) 

 
Figure 8 Optimum damping factor  
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