Taiki Saito

Basic Theory of TMD

1. Displacement amplification factor of TMD

To calculate the vibration characteristics of a TMD, a two-story lumped mass model (Figure 1) is
considered. Figure 1 assumes a building with a TMD at the top, and consists of a single mass model
(main vibration system) and a TMD (secondary vibration system). The main vibration system has
mass m, stiffness k; and damping c¢;, and the secondary vibration system has mass m,,
stiffnessk,, and damping c,. The relative displacement of the main vibration system to the ground

displacement x, is x;, and the relative displacement of the secondary vibration system is x,.
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The equation of motion in Figure 1 is as follows

{m1(551 + Xo) +c1Xq —c(dy — Xp) + hyxg — k(X — %) =0
my (X, + %o) + cp(y — %1) + kp(x —x1) =0

)]
From Equation (1), treating the ground inertia force as an external force, the following equation of
motion is obtained

(2)

{m155'1 + (1 + )% — %5 + (ky + k)X — kpxp = —my ¥y
mzjéz - szl + szz - k2x1 + kzXz = _mzjéo



Described in matrix form, it is as follows.
mq 0 56.'1 Cq1 + Cy, —C {xl} [kl + kz —kz] X1 _ [ml 0 ] ..
[ 0 mz] {xz} -, o | W Tl =k, Ky {xz} =7lo m, {1}"0 ®)

Dividing equations 1 and 2 by m1 and mzg,

1 0 5&1} [Zwlhl + 2uw,h, —Zuwzhz] {xl} wi +win —wipleny 1 01y,
where w; is the natural circular frequency of the main vibration system, w, is the natural circular
frequency of the secondary vibration system, u is the mass ratio of the main and secondary vibration
systems, hi1 is the damping factor of the main vibration system, and hz is the damping factor of the

secondary vibration system.

k1 kz m, Cq C2
Wy =\]m:1 () w, =\/m:2 (b) M=m_1 () h =2m1w1 () hy =2m2w2 © ()

Here, the ground motions defined by the following equation.
Xg = Age™* (6)
The acceleration of the ground motion is then

.92'0 = _szOeiwt (7)

The displacement, velocity, and acceleration are given as follows

xj = At (j=0,12) (8)
X = iwAje™t  (j=0,12) (9)
¥ = —w?4e@t  (j=0,12) (10)

Substituting Equations (7) through (10) into Equation (4), the following equation is obtained

] {1}Aoe"“’t (11)

—w? + w? + win+ Qwihy + 2uwyhy)io —wiu — 2uw,hyiw {Al}eiwt B [wz 0
_(U% - 2(1)2]7,21:(1) _(1)2 + (A)% + Za)zhziw AZ O (1)2

Dividing Equation (11) by w? and transforming the equation, the following equation is obtained

[—,b’z + 1+ a?u+ (2hy + 2uahy)if  —a’u — 2uah,ip ]{Al} _ {,BZAO}

12
—a? = 2ah,ip —B% + a® + 2ah,ipl (A B?A, (12)

where a is the natural circular frequency ratio of the main vibration system to the secondary
vibration system, and B is the natural circular frequency ratio of the main vibration system to the

harmonic ground motion.

a=— =— (13)



The complex amplitudes A; and A, are obtained as follows.

4 - {a®(1 + ) — B} + 2haB(1 + )i
- detA4

X B%4A, (14)

_ {1+ a?( +u)—p?}+2B{hy + hya(1 + w)}i

A
2 detA

X B4, (15)

Therefore, from Equations (8), (14) and (15), the relative displacements x; and x, of the main and

secondary vibration systems, respectively, are determined as follows

= A e'®t = X Age't = ——x 16
X1 = e detA 0 TR i O (16)
. B2{1+a?(1+w) — B2} +2B3{hy + hya(1 + w}i , R, + Li
= Ayel®t = X Agett = —=x 17
X2 = e detA 0 T Ry i O a7

where each coefficient is defined as follows

Ry ={(1 = B*)(a? = p*) — af?(ua + 4h1hy)} (@) 1o = 2B{hs(a® — B?) + hpya(1 — B[1 + u])} (b) (18)
Ry = pHa?(1 + ) - %} (@ I =2hap*1+p (b) (19)
R, = p*{1 + a®(1+ 1) — %} (@) L =2%h + hya(l+w} (b) (20)

Equation below is the ratio of the amplitudes of the response of the main vibration system to the

pseudo static response x, which is called the displacement amplification factor.

x| _ \/m
%ol VRiT G
_ VBHa2(1 + p) — B2}2 + 4h2a2B6(1 + p)? 1)
VI = B2)(a? - B2) — af?(ua + 4hihy)}? + 4% {h, (a? — B2) + hya(1 — B2[1 + u])}?
v _JBTE
%l R+
VBH1 + a?(1 + ) — B?32 + 4B%(hy + hya(1 + ))? 22)

) VI = B (a2 = B?) — aB?(ua + 4hihy)}? + 482 {hy (@ — B2) + hya(1 — B2[1 + u])}?



Next, consider the case where the displacement of the vibration system is defined in terms of

absolute displacement, as shown in Figure 2.
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Similar to Equation (2) in the case of relative displacement, the equation of motion when the
ground motion x,(t) is added to the base of the two-story lumped mass model is formulated using
the absolute displacements X;, X,.

{ml(Xl - 550) + (¢, + CZ)(Xl - 550) - Cz(Xz - 550) + (ky + ko) (X1 — x0) — ky(Xy — x9) = —my %, (23)

mz(Xz - 550) - CZ(Xl - 550) + Cz(Xz - 550) — k(X1 — x0) + k(X — x0) = —myX,

The following equation for the absolute displacement amplification factor can be obtained by
performing the same operations as in Equations (4)-(22). The following equation shows that the
absolute displacement amplification factor is equal to the complex amplitude of the relative

displacement amplification factor plus the complex amplitude of the ground displacement.

X1

J{a? — B2 — 4ap?h,hy}? + 4B%{hy (a® — B?) + ah,}?
VI = B2 (a? — B2) — aB?(ua + 4h hy)Y? + 4B%{hy(a? — B2) + hya(1 — B2[1 + p])}?
_ \/(Rl + Ro)? + (I +1p)?

JRE + 12

Xo

(24)



Xz

_ Ji{a? — 4aB?h hy 32 + {2af (ahy + hy)}?
JIA = B (a? — B2) — ap?(ua + 4hihy)¥? + 46%{hy(a? — B2) + hya(1 — B2[1 + u])}?
_ \/(Rz + Ro)? + (I, + 1p)?

JRE+ 12

Xo

(25)

From Equations (10) and (25) and (26), the acceleration amplification multiplier can be obtained as
follows. The following equations show that the ratio of response amplitude to ground motion is
equivalent for both displacement and acceleration.

i x (Ri +Ro) + (I + Ip)i y _(Ri+Ro)+ (L+1)i

Xi(j=12) = —w?4je't = Ay X e'ot X%, (26
iU ) = —w e Ro + Iyl 0ox¢€ Ro + Ioi *o (26)
. 2 2
e k=12) (Rj +Ro)" + (I + o) X; @7
R ' VRS + I Xo

The absolute response amplification factor of the main vibration system obtained by Equations (24)
is shown in Figure 3. The horizontal axis of the figure is the frequency ratio of the circular
frequency (w) of the harmonic ground motion input to the two-story lumped mass model in Figure
2 normalized by the natural circular frequency (w;) of the main vibration system, and the vertical
axis is the response of the main vibration system normalized by the amplitude of the ground
motion. As shown in Equation (27), the ratio of response amplitude to ground motion is equivalent
to both the displacement response and the acceleration response, so they are treated here as a

response amplification factor without distinguishing between them.

As shown in Figure 3, the response amplification of the main vibration system has a resonance curve

with a valley near a frequency ratio of 1 and two peaks on both sides.

(¢ =0.9, u=0.1, h; =0.05, h, =0.1)
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Figure 3 Response amplification factor of the main vibration system



In this section, the optimal values of mass, stiffness, and damping of the TMD are examined from
the resonance curve when h; = 0, without considering damping of the main vibration system.
Figure 4(a) shows a model of the main vibration system only, assuming a non-damped building
with no TMD installed, Figure 4(b) shows a model of a building with an undamped TMD at the top,
and Figure 4(c) shows a model of a building with a damped TMD at the top. Figure 5 shows the
resonance curves for each. Here, the frequency ratio a = 1, the mass ratio u = 0.05, and the

damping factor h, = 0.05 for the secondary vibration system is assumed.
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Figure 5 Response amplification factor of the main vibration system

Figure 6 shows the change in response reduction ratio with mass ratio. It can be seen that the
response reduction ratio increases as the mass ratio is increased. It can also be seen that not only
the amplitude of the maxima is decreasing, but also the interval between the frequencies of the
maxima is widening as the mass ratio is increased. This has the effect of preventing the response
from increasing when the external force frequency is input in a range slightly off the resonance

frequency. Although the installation of large-weight weights can not only increase the response



reduction effect but also improve robustness, the mass of the weights should be determined in actual

design, taking into consideration the installation in the building, construction restrictions, and safety.
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Figure 6 Comparison of resonance curves for different mass ratios

Figure 7 shows the resonance curve for varying the damping factor of the TMD with constant mass
ratio and frequency ratio (mass ratio u = 0.1 and frequency ratio a = 0.9). As can be seen, there are

two points that always pass through for any damping factor, and these are called fixed points.
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Figure 7 Comparison of resonance curves of different damping factors

The fixed-point theorem defines the optimal value as the frequency ratio at which the two maxima
are the same value. When the damping factor is set to the optimum value, a resonance curve with
the fixed point as the maximum value is drawn, as shown in Figure 8. This is the resonance curve

of the optimum tuned damping that reduces the response factor the most.
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Figure 8 Resonance curve with optimum damping factor



2. Optimum damping factor of TMD

In the absolute displacement amplification factor of Equation (25), if the damping factor of the main

vibration system h; = 0 and the damping factor of the secondary vibration system h, = h;

ﬁ 3 \/{az _ '32}2 T 4h2a2,82
xol VI = B2)(a? - B2) — na?p?y? + 42 {ha(1 — B2[1 + u)}?
_yai +h%a; 29)
- Va3 + h?aZ
where
a, = a? — p?
a, = 2af
az = (1 - B*)(a? — B%) — ua?p?
a, = 2aB(1 - B*[1+u) (30)
When h=0
|ﬁ _|% (31)
X as
When h =«
Al % (32)
X ay
At the fixed point, since both are equal
Gl _ |22 (33)
as a,
That is
a;\? a,\?2
@) =@ (34)
{6‘{2 _ ﬁZ}Z 3 40(2ﬁ2 3 1 3
(=D — ) — ua?fF ~ 47 a(l— f21 + ADP. (L= 201 + A])? (33)
where
a=a% b=p% c=1+u (36)
Then
(a — b)? 3 1
(a —b+b2—abc)? (1-— bc)? (7)
(a—b) 1 (38)

(a—b+b2—abc)=_(1—bc)
(1+c)b?2-2(1+ac)b+2a=0



2(1+ ac) 2a

b2
1+c¢ +1+c

(39)

If the solutions of the quadratic equation for hare ¢, and ¢@,, the following equation holds from the

relationship between the solutions and coefficients.

2(1+ ac)
=— 40
@1+ @ T+ec (40)
2a
- 41
D192 1+tc (41)

From the condition that the amplitudes at the solutions at ¢; and ¢, are equal when the damping

G, -G, 2

1 _ 1
(1-¢10? (1 —¢,c)?

1—@ic=1{1-@,c}

factor h = oo, we obtain

From the condition ¢, # ¢,
1 -0 =—{1—@yc}
2
Pt Q2= (43)

From the relationship between the solutions and coefficients of the quadratic equation

2(1+ac) 2
B A 44
1+c C (44)
1
a= ) (45)
c
Therefore, the optimum frequency ratio is obtained as
Wy 1
- 46
w, 1+u (46)
The solution of the quadratic equation,
2 2a
b*—b (—) + =0
c 1+c
Then
K
E: \/ : 2 1 c—1\ 'EJzFu
-1+ = 47)

2(1+c) c c+1 1+u

Since b = p? = (wl)z,

10



(48)

Next, find the damping factor A such that the response factor is the maximum at the fixed point.

From the absolute displacement amplification factor, Equation (29),

(X1>2 _a} +h%a3

xo/ i +h2aZ
where
a = {a? - B*¥* = (a - b)*
a? = {2ap}? = 4ab
aj ={(1 - pH(a?—p?) — ua*p?}* = (a — b + b* — abc)?
a? = {2af(1 — B?[1 + u])}? = 4ab(1 — bc)?
Then
X1\ (a — b)? + 4h%ab f(b)
(x_o) ~(a—b+b2—abc)? + 4h2ab(1—bc)?  g(b)

Since the partial derivative of the equation is zero at the maximum point

9 {(ﬁ)z} _'®)g®) —fh)g'®) _
db | \x, g(b)?
Therefore
f'(b)g(b) ~ f(b)g' (b) = 0
where

f(b) = (a—b)?+ 4h%ab
f'(b) = —2(a —b) + 4h%a
g(b) = (a — b + b? — abc)? + 4h?ab(1 — bc)?

g'(b) =2(a— b+ b?—abc)(—1+ 2b — ac) + h?{4a(1 — bc)? — 8abc(1 — bc)}

From Equation (37),
(a — b)? B 1
(a—b+b?—abc)> (1-— bc)?
(a—b+b?—abc)? = (a—b)?(1 — bc)?
(a—=b+b?—abc) =—(a—-b)(1 - bc)

Then

g(b) = (a— b+ b?—abc)? + 4h?ab(1 — bc)? = (a — b)?(1 — bc)? + 4h?ab(1 — bc)?

= (1 = bc)*{(a — b)? + 4h%ab}

g'(b) =2(a— b+ b?—abc)(—1+ 2b — ac) + h?{4a(1 — bc)? — 8abc(1 — bc)}
=2(a—b)(1 —bc)(1 —2b + ac) + h*{4a(1 — bc)? — 8abc(1 — be)}

11

(49)

(50)

61

(52)

(53)

(54)
(55)



To summarize the above
f(b) = (a—b)?+ 4h%ab
f'(b) = —2(a —b) + 4h%a
g(b) = (1 = bc)*f (b)
g'(b) = (1 — bc)[2(a — b)(1 — 2b + ac) + h?{4a(1 — bc) — 8abc}]

Substituting into Equation (53),
f'(b)g(b) — f(b)g'(b)
={-2(a—b) + 4h?a}(1 — bc)?f(b)
— f(b)(1 = bc)[2(a— b)(1 — 2b + ac) + h?{4a(1 — bc) — 8abc}] =0
Dividing by f(b)(1 — bc)
{=2(a—b) +4h*a}(1 — bc) — [2(a — b)(1 — 2b + ac) + h?*{4a(1 — bc) — 8abc}] = 0
{4a(1 — bc) — 4a(1 — bc) + 8abc}h? —2(a—b){(1 —bc)+ (1 —2b+ac)} =0
(8abc®)h? —2(a—b)(2—bc—2b+ac) =0
_ (a=b)(2—bc—2b+ ac)

2
h 4abc3
From Equations (39) and (45)
2(1 + 2
b2 _ ( ac) N a _
1+c 1+c
1
a:C—2
Then
2 2 2(1_ 2 2 2 1_ 22_ i_
p2-b(H+22=0 > b2 -b(})+=5=0 > b*?—2bc+-—=0

> b%c?(1+c)—2bc(1+c)+2=0 > b%c?+b%c®—2bc—2bc?>+2=0

Transforming Equation (60)

1 1 2 1 1 2,123 2.2
p2 - (@b)e-be=zbtac) 3 (Z-b)(2-be-2b+3) N (1-bc?)(2-bc-2b+2) N 2-bc—2b+2-2bc?+b?c3+2b?c?~bc

4abc3 4bc 4bc3 4bc3
b?c3—2bc—2bc?+2-2b+5+2b%c? N —b2c?-2b+5+2b%c? —2b+-+b?c? ~2c+5+bc3
4bc3 4bc3 4bc3 4c*

From Equations (36) and (47)
c=1+u

fL
1+ T

1+u

12

(56)
(57)
(58)
(59)

(60)

(61)



Substituting these equations,

1+ 1
b= ——em =5 A W+ -VA), A=
1+ T

—2c+2+bed = —2(1+p) +3 (L + W)@+ (1 - VA) + (1 + w2 (1 + VA) = ZLE[3 4 VA
Then, Equation (60) will be

5 i "

=—— |3 - 62
sa+0°\° " |27z (62)
In the similar way, when
¢
1 24+ u
T 14ypu
The optimum damping factor is
2 u U
=——|3— |—— 63
8(1+ w3 2+ u (63)
By averaging Equation (62) and (63),
3u
2 _ 64
Therefore, the optimum damping factor is obtained as
3u
— 65
hopt 8(1 +M)3 ( )

0.2

h
u ’ u
0.3 h= —— |3 LA
e s +i\° " |27¢
0.25

0.15 h= £ [3- |2
' 8(1+ p)3 24+u
0.1 A
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0 u
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Figure 8 Optimum damping factor



